Train on 31920 samples, validate on 1680 samples
Epoch 1/10
31920/31920 [==============================] - 3s - loss: 0.4771 - acc: 0.8713 - val_loss: 0.3271 - val_acc: 0.9054
Epoch 2/10
31920/31920 [==============================] - 3s - loss: 0.3105 - acc: 0.9121 - val_loss: 0.2945 - val_acc: 0.9119
Epoch 3/10
31920/31920 [==============================] - 3s - loss: 0.2806 - acc: 0.9207 - val_loss: 0.2707 - val_acc: 0.9185
Epoch 4/10
31920/31920 [==============================] - 3s - loss: 0.2605 - acc: 0.9250 - val_loss: 0.2533 - val_acc: 0.9232
Epoch 5/10
31920/31920 [==============================] - 3s - loss: 0.2416 - acc: 0.9320 - val_loss: 0.2368 - val_acc: 0.9262
Epoch 6/10
31920/31920 [==============================] - 3s - loss: 0.2240 - acc: 0.9367 - val_loss: 0.2233 - val_acc: 0.9321
Epoch 7/10
31920/31920 [==============================] - 3s - loss: 0.2068 - acc: 0.9407 - val_loss: 0.2104 - val_acc: 0.9357
Epoch 8/10
31920/31920 [==============================] - 3s - loss: 0.1913 - acc: 0.9461 - val_loss: 0.1997 - val_acc: 0.9387
Epoch 9/10
31920/31920 [==============================] - 3s - loss: 0.1771 - acc: 0.9506 - val_loss: 0.1872 - val_acc: 0.9411
Epoch 10/10
31920/31920 [==============================] - 3s - loss: 0.1640 - acc: 0.9540 - val_loss: 0.1785 - val_acc: 0.9429
8400/8400 [==============================] - 0s
Using [512] number of hidden neurons yields. Accuracy score: 0.9412
Train on 31920 samples, validate on 1680 samples
Epoch 1/10
31920/31920 [==============================] - 3s - loss: 0.4966 - acc: 0.8655 - val_loss: 0.3360 - val_acc: 0.9048
Epoch 2/10
31920/31920 [==============================] - 3s - loss: 0.3118 - acc: 0.9112 - val_loss: 0.2957 - val_acc: 0.9137
Epoch 3/10
31920/31920 [==============================] - 3s - loss: 0.2772 - acc: 0.9205 - val_loss: 0.2687 - val_acc: 0.9155
Epoch 4/10
31920/31920 [==============================] - 3s - loss: 0.2527 - acc: 0.9278 - val_loss: 0.2465 - val_acc: 0.9292
Epoch 5/10
31920/31920 [==============================] - 3s - loss: 0.2305 - acc: 0.9350 - val_loss: 0.2358 - val_acc: 0.9286
Epoch 6/10
31920/31920 [==============================] - 3s - loss: 0.2110 - acc: 0.9404 - val_loss: 0.2155 - val_acc: 0.9357
Epoch 7/10
31920/31920 [==============================] - 3s - loss: 0.1932 - acc: 0.9459 - val_loss: 0.2009 - val_acc: 0.9393
Epoch 8/10
31920/31920 [==============================] - 3s - loss: 0.1774 - acc: 0.9512 - val_loss: 0.1895 - val_acc: 0.9440
Epoch 9/10
31920/31920 [==============================] - 3s - loss: 0.1632 - acc: 0.9552 - val_loss: 0.1836 - val_acc: 0.9446
Epoch 10/10
31920/31920 [==============================] - 3s - loss: 0.1510 - acc: 0.9592 - val_loss: 0.1714 - val_acc: 0.9476
8400/8400 [==============================] - 0s
Using [256] number of hidden neurons yields. Accuracy score: 0.9454
Train on 31920 samples, validate on 1680 samples
Epoch 1/10
31920/31920 [==============================] - 3s - loss: 0.5168 - acc: 0.8630 - val_loss: 0.3357 - val_acc: 0.9030
Epoch 2/10
31920/31920 [==============================] - 3s - loss: 0.3111 - acc: 0.9107 - val_loss: 0.2855 - val_acc: 0.9125
Epoch 3/10
31920/31920 [==============================] - 3s - loss: 0.2703 - acc: 0.9223 - val_loss: 0.2552 - val_acc: 0.9220
Epoch 4/10
31920/31920 [==============================] - 3s - loss: 0.2401 - acc: 0.9312 - val_loss: 0.2340 - val_acc: 0.9351
Epoch 5/10
31920/31920 [==============================] - 3s - loss: 0.2161 - acc: 0.9386 - val_loss: 0.2131 - val_acc: 0.9435
Epoch 6/10
31920/31920 [==============================] - 3s - loss: 0.1956 - acc: 0.9452 - val_loss: 0.2018 - val_acc: 0.9429
Epoch 7/10
31920/31920 [==============================] - 3s - loss: 0.1791 - acc: 0.9503 - val_loss: 0.1865 - val_acc: 0.9476
Epoch 8/10
31920/31920 [==============================] - 3s - loss: 0.1644 - acc: 0.9544 - val_loss: 0.1789 - val_acc: 0.9476
Epoch 9/10
31920/31920 [==============================] - 3s - loss: 0.1518 - acc: 0.9578 - val_loss: 0.1695 - val_acc: 0.9476
Epoch 10/10
31920/31920 [==============================] - 3s - loss: 0.1412 - acc: 0.9619 - val_loss: 0.1625 - val_acc: 0.9512
8400/8400 [==============================] - 0s
Using [128] number of hidden neurons yields. Accuracy score: 0.9483
Train on 31920 samples, validate on 1680 samples
Epoch 1/10
31920/31920 [==============================] - 3s - loss: 0.5449 - acc: 0.8554 - val_loss: 0.3485 - val_acc: 0.9012
Epoch 2/10
31920/31920 [==============================] - 3s - loss: 0.3154 - acc: 0.9113 - val_loss: 0.2837 - val_acc: 0.9202
Epoch 3/10
31920/31920 [==============================] - 3s - loss: 0.2685 - acc: 0.9234 - val_loss: 0.2516 - val_acc: 0.9214
Epoch 4/10
31920/31920 [==============================] - 3s - loss: 0.2377 - acc: 0.9321 - val_loss: 0.2304 - val_acc: 0.9315
Epoch 5/10
31920/31920 [==============================] - 3s - loss: 0.2135 - acc: 0.9388 - val_loss: 0.2114 - val_acc: 0.9357
Epoch 6/10
31920/31920 [==============================] - 3s - loss: 0.1942 - acc: 0.9449 - val_loss: 0.1982 - val_acc: 0.9423
Epoch 7/10
31920/31920 [==============================] - 3s - loss: 0.1785 - acc: 0.9501 - val_loss: 0.1849 - val_acc: 0.9423
Epoch 8/10
31920/31920 [==============================] - 3s - loss: 0.1651 - acc: 0.9538 - val_loss: 0.1764 - val_acc: 0.9470
Epoch 9/10
31920/31920 [==============================] - 3s - loss: 0.1532 - acc: 0.9571 - val_loss: 0.1712 - val_acc: 0.9458
Epoch 10/10
31920/31920 [==============================] - 3s - loss: 0.1433 - acc: 0.9596 - val_loss: 0.1581 - val_acc: 0.9512
8400/8400 [==============================] - 0s
Using [64] number of hidden neurons yields. Accuracy score: 0.9485
Train on 31920 samples, validate on 1680 samples
Epoch 1/10
31920/31920 [==============================] - 3s - loss: 0.5879 - acc: 0.8494 - val_loss: 0.3675 - val_acc: 0.8982
Epoch 2/10
31920/31920 [==============================] - 3s - loss: 0.3271 - acc: 0.9102 - val_loss: 0.2959 - val_acc: 0.9149
Epoch 3/10
31920/31920 [==============================] - 3s - loss: 0.2780 - acc: 0.9222 - val_loss: 0.2647 - val_acc: 0.9226
Epoch 4/10
31920/31920 [==============================] - 3s - loss: 0.2481 - acc: 0.9306 - val_loss: 0.2408 - val_acc: 0.9333
Epoch 5/10
31920/31920 [==============================] - 3s - loss: 0.2257 - acc: 0.9376 - val_loss: 0.2268 - val_acc: 0.9381
Epoch 6/10
31920/31920 [==============================] - 3s - loss: 0.2085 - acc: 0.9421 - val_loss: 0.2116 - val_acc: 0.9440
Epoch 7/10
31920/31920 [==============================] - 3s - loss: 0.1940 - acc: 0.9470 - val_loss: 0.2033 - val_acc: 0.9452
Epoch 8/10
31920/31920 [==============================] - 3s - loss: 0.1816 - acc: 0.9498 - val_loss: 0.1938 - val_acc: 0.9482
Epoch 9/10
31920/31920 [==============================] - 3s - loss: 0.1714 - acc: 0.9526 - val_loss: 0.1903 - val_acc: 0.9482
Epoch 10/10
31920/31920 [==============================] - 3s - loss: 0.1628 - acc: 0.9547 - val_loss: 0.1879 - val_acc: 0.9458
8400/8400 [==============================] - 0s
Using [32] number of hidden neurons yields. Accuracy score: 0.9396
Train on 31920 samples, validate on 1680 samples
Epoch 1/10
31920/31920 [==============================] - 3s - loss: 0.6751 - acc: 0.8353 - val_loss: 0.4077 - val_acc: 0.8929
Epoch 2/10
31920/31920 [==============================] - 3s - loss: 0.3600 - acc: 0.9049 - val_loss: 0.3196 - val_acc: 0.9101
Epoch 3/10
31920/31920 [==============================] - 3s - loss: 0.3040 - acc: 0.9168 - val_loss: 0.2844 - val_acc: 0.9202
Epoch 4/10
31920/31920 [==============================] - 3s - loss: 0.2735 - acc: 0.9251 - val_loss: 0.2576 - val_acc: 0.9208
Epoch 5/10
31920/31920 [==============================] - 3s - loss: 0.2531 - acc: 0.9294 - val_loss: 0.2460 - val_acc: 0.9310
Epoch 6/10
31920/31920 [==============================] - 3s - loss: 0.2372 - acc: 0.9344 - val_loss: 0.2364 - val_acc: 0.9315
Epoch 7/10
31920/31920 [==============================] - 3s - loss: 0.2249 - acc: 0.9367 - val_loss: 0.2261 - val_acc: 0.9321
Epoch 8/10
31920/31920 [==============================] - 3s - loss: 0.2143 - acc: 0.9406 - val_loss: 0.2254 - val_acc: 0.9363
Epoch 9/10
31920/31920 [==============================] - 3s - loss: 0.2054 - acc: 0.9430 - val_loss: 0.2173 - val_acc: 0.9369
Epoch 10/10
31920/31920 [==============================] - 3s - loss: 0.1974 - acc: 0.9453 - val_loss: 0.2181 - val_acc: 0.9339
8400/8400 [==============================] - 0s
Using [16] number of hidden neurons yields. Accuracy score: 0.9305
Train on 31920 samples, validate on 1680 samples
Epoch 1/10
31920/31920 [==============================] - 3s - loss: 0.9143 - acc: 0.7975 - val_loss: 0.5725 - val_acc: 0.8679
Epoch 2/10
31920/31920 [==============================] - 3s - loss: 0.4821 - acc: 0.8799 - val_loss: 0.4302 - val_acc: 0.8875
Epoch 3/10
31920/31920 [==============================] - 3s - loss: 0.3984 - acc: 0.8942 - val_loss: 0.3778 - val_acc: 0.9000
Epoch 4/10
31920/31920 [==============================] - 3s - loss: 0.3587 - acc: 0.9017 - val_loss: 0.3469 - val_acc: 0.9077
Epoch 5/10
31920/31920 [==============================] - 3s - loss: 0.3345 - acc: 0.9081 - val_loss: 0.3352 - val_acc: 0.9065
Epoch 6/10
31920/31920 [==============================] - 3s - loss: 0.3178 - acc: 0.9123 - val_loss: 0.3209 - val_acc: 0.9131
Epoch 7/10
31920/31920 [==============================] - 3s - loss: 0.3048 - acc: 0.9143 - val_loss: 0.3136 - val_acc: 0.9101
Epoch 8/10
31920/31920 [==============================] - 3s - loss: 0.2941 - acc: 0.9167 - val_loss: 0.3106 - val_acc: 0.9125
Epoch 9/10
31920/31920 [==============================] - 3s - loss: 0.2862 - acc: 0.9176 - val_loss: 0.3100 - val_acc: 0.9131
Epoch 10/10
31920/31920 [==============================] - 3s - loss: 0.2788 - acc: 0.9202 - val_loss: 0.3049 - val_acc: 0.9131
8400/8400 [==============================] - 0s
Using [8] number of hidden neurons yields. Accuracy score: 0.9081
Train on 31920 samples, validate on 1680 samples
Epoch 1/10
31920/31920 [==============================] - 3s - loss: 1.2546 - acc: 0.6927 - val_loss: 0.8366 - val_acc: 0.7988
Epoch 2/10
31920/31920 [==============================] - 3s - loss: 0.7538 - acc: 0.7991 - val_loss: 0.6797 - val_acc: 0.8185
Epoch 3/10
31920/31920 [==============================] - 3s - loss: 0.6600 - acc: 0.8143 - val_loss: 0.6277 - val_acc: 0.8304
Epoch 4/10
31920/31920 [==============================] - 3s - loss: 0.6239 - acc: 0.8230 - val_loss: 0.6077 - val_acc: 0.8268
Epoch 5/10
31920/31920 [==============================] - 3s - loss: 0.6027 - acc: 0.8256 - val_loss: 0.5839 - val_acc: 0.8351
Epoch 6/10
31920/31920 [==============================] - 3s - loss: 0.5892 - acc: 0.8306 - val_loss: 0.5785 - val_acc: 0.8315
Epoch 7/10
31920/31920 [==============================] - 3s - loss: 0.5790 - acc: 0.8316 - val_loss: 0.5758 - val_acc: 0.8321
Epoch 8/10
31920/31920 [==============================] - 3s - loss: 0.5709 - acc: 0.8342 - val_loss: 0.5739 - val_acc: 0.8339
Epoch 9/10
31920/31920 [==============================] - 3s - loss: 0.5654 - acc: 0.8342 - val_loss: 0.5581 - val_acc: 0.8345
Epoch 10/10
31920/31920 [==============================] - 3s - loss: 0.5599 - acc: 0.8374 - val_loss: 0.5736 - val_acc: 0.8256
8400/8400 [==============================] - 0s
Using [4] number of hidden neurons yields. Accuracy score: 0.8177
Train on 31920 samples, validate on 1680 samples
Epoch 1/10
31920/31920 [==============================] - 3s - loss: 1.6598 - acc: 0.3836 - val_loss: 1.4273 - val_acc: 0.4155
Epoch 2/10
31920/31920 [==============================] - 3s - loss: 1.3708 - acc: 0.4233 - val_loss: 1.3183 - val_acc: 0.4298
Epoch 3/10
31920/31920 [==============================] - 3s - loss: 1.2975 - acc: 0.4403 - val_loss: 1.2685 - val_acc: 0.4536
Epoch 4/10
31920/31920 [==============================] - 3s - loss: 1.2581 - acc: 0.4591 - val_loss: 1.2310 - val_acc: 0.4542
Epoch 5/10
31920/31920 [==============================] - 2s - loss: 1.2294 - acc: 0.4855 - val_loss: 1.2125 - val_acc: 0.5048
Epoch 6/10
31920/31920 [==============================] - 2s - loss: 1.2047 - acc: 0.5040 - val_loss: 1.1922 - val_acc: 0.5310
Epoch 7/10
31920/31920 [==============================] - 2s - loss: 1.1818 - acc: 0.5237 - val_loss: 1.2201 - val_acc: 0.5262
Epoch 8/10
31920/31920 [==============================] - 2s - loss: 1.1645 - acc: 0.5443 - val_loss: 1.1387 - val_acc: 0.5780
Epoch 9/10
31920/31920 [==============================] - 2s - loss: 1.1491 - acc: 0.5534 - val_loss: 1.1416 - val_acc: 0.5542
Epoch 10/10
31920/31920 [==============================] - 2s - loss: 1.1351 - acc: 0.5653 - val_loss: 1.1171 - val_acc: 0.6000
8400/8400 [==============================] - 0s
Using [2] number of hidden neurons yields. Accuracy score: 0.5676
Train on 31920 samples, validate on 1680 samples
Epoch 1/10
31920/31920 [==============================] - 3s - loss: 1.9758 - acc: 0.2119 - val_loss: 1.8660 - val_acc: 0.2583
Epoch 2/10
31920/31920 [==============================] - 2s - loss: 1.8501 - acc: 0.2623 - val_loss: 1.8218 - val_acc: 0.3000
Epoch 3/10
31920/31920 [==============================] - 2s - loss: 1.8202 - acc: 0.2602 - val_loss: 1.7980 - val_acc: 0.3018
Epoch 4/10
31920/31920 [==============================] - 2s - loss: 1.8035 - acc: 0.2698 - val_loss: 1.7855 - val_acc: 0.2565
Epoch 5/10
31920/31920 [==============================] - 2s - loss: 1.7889 - acc: 0.2808 - val_loss: 1.7755 - val_acc: 0.3083
Epoch 6/10
31920/31920 [==============================] - 2s - loss: 1.7775 - acc: 0.2811 - val_loss: 1.7672 - val_acc: 0.3357
Epoch 7/10
31920/31920 [==============================] - 2s - loss: 1.7674 - acc: 0.3117 - val_loss: 1.7552 - val_acc: 0.3375
Epoch 8/10
31920/31920 [==============================] - 2s - loss: 1.7580 - acc: 0.3014 - val_loss: 1.7477 - val_acc: 0.2982
Epoch 9/10
31920/31920 [==============================] - 2s - loss: 1.7489 - acc: 0.3145 - val_loss: 1.7322 - val_acc: 0.3476
Epoch 10/10
31920/31920 [==============================] - 2s - loss: 1.7419 - acc: 0.3189 - val_loss: 1.8143 - val_acc: 0.2798
8400/8400 [==============================] - 0s
Using [1] number of hidden neurons yields. Accuracy score: 0.2919